

PUBLIC OPEN HOUSES - SPRING 2014

STATION #6

LINE 1 & 1R CONSOLIDATION OPTION

MINIMIZING ROAD USER CONFLICTS, MAXIMIZING SPEED & EFFICIENCY

BENEFITS OF THE ROAD DIET, CONSOLIDATION & TREATMENT OPTIONS

- Minimize bus-bicycle conflict in roadway: A road diet provides sufficient space for separate bicycle lanes or cycle tracks so that buses do not have to share the vehicle travel lane with cyclists.
- Minimize bus-bicycle conflict at bus stops: Bus bulbs provide opportunities to physically separate bicycles and buses at bus stops by routing bicycles behind the bulb (creating a "transit island").
- Enable more efficient transit service: Bus bulbs provide a more convenient and efficient transit facility for bus operators to access and egress;
- Improve transit passenger waiting environment: Bus bulbs provide space for shelters, benches and signs, while freeing space from existing sidewalks for landscaping, bike parking, seating and other
- Improve bus speed and reliability: Transit Signal Priority (TSP) combined with bus stop relocation to the far-side of signals, and queue bypass lanes improve service speed and reliability.

INCREASE TRANSIT SPEED WHILE IMPROVING THE TRANSIT RIDER EXPERIENCE

NORTHBOUND	BUS SPEED	
	AM	PM
Baseline	11.1	11.4
Full Road Diet without Treatments	8.7	10.5
Full Road Diet with Treatments	9.9	11.3
Proposed Road Diet with Treatments	11.1	11.4
Proposed Road Diet with Treatments and Queue Bypass Lanes	11.3	11.7

SOUTHBOUND	BUS SPEED	
	AM	PM
Baseline	12.0	11.0
Full Road Diet without Treatments	6.0	3.9
Full Road Diet with Treatments	11.8	10.4
Proposed Road Diet with Treatments	12.2	11.0
Proposed Road Diet with Treatments and Queue Bypass Lanes	12.4	11.3

URBAN DESIGN TO IMPROVE THE TRANSIT PASSENGER ENVIRONMENT

EXAMPLES OF BUS BULBS AND TRANSIT ISLANDS

TRANSIT ISLAND WITH BIKE LANE BEHIND

BUS BULB-OUT CONFIGURATION OPTIONS

- Bus stops in outside travel
- Bus pulls straight into stop
- Bus-bulb provides expanded pedestrian zone adjacent to existing sidewalk
- Bicycles share outside travel lane with buses

- Bus stops in outside travel lane
- Bus pulls straight into stop
- Bus-bulb provides space for shelter, benches, etc. away from existing sidewalk, freeing sidewalk space
- Bicycle lane connects behind bus stop to elimiate bus-bike conflict point at bus-bulb

CYCLE TRACK BEHIND BUS-BULB ROAD DIET)

- Bus stops in bus pull-out lane
- Bus pulls straight into stop
- Bus-bulb provides space for shelter, benches, etc. away from existing sidewalk, freeing sidewalk space
- Cycle track connects behind bus stop to elimiate bus-bike conflict point at bus-bulb

TELEGRAPH AVENUE **COMPLETE STREETS** IMPLEMENTATION PLAN